

ISSN: 2320-0294

A FOCUS ON FIXED POINT THEOREM IN BANACH SPACE

Neena B. Gupta*

Abstract

In this paper we present a fixed point theorem with the help of self mapping which satisfy the contractive type of condition in Banach Space. Its purpose is to change the contractive condition by D.P. Shukla & Shivkant Tiwari [4]

Keywords:

Fixed point, self maps, contraction mapping, Banach Space, Cauchy Sequence, Convex Set.

Introduction:

In (1979) Fisher gave the contractive condition for a mapping $S: X \to X$

$$[d(Sx,Ty)]^{2} \leq \alpha d(x,Sx)d(y,Sy) + \beta d(x,Sy)d(y,Sx)$$

For all x, y
$$\in$$
 X and $0 \le \alpha < 1$ and $\beta \ge 0$

In 2012 D.P. Shukla [4] established a fixed point theorem satisfying the following condition

$$[d(Sx, Sy)^{2} \le \alpha.\min \begin{bmatrix} \frac{1}{5} \{d(x, Sx)d(x, Sy) + d(x, Sy)d(y, Sx)\}, \\ \frac{1}{5} \{d(x, Sx)d(x, Sy) + d(x, Sx)d(y, Sx)\}, \\ \frac{1}{5} \{d(x, Sy)d(y, Sx) + d(x, Sx)d(y, Sx)\} \end{bmatrix}$$

⁻

^{*} Asst. Prof. of Mathematics, Career College, Bhopal, M.P., India

Definition and Preliminaries:

- <u>Banach Space</u>: A normed linear space which is complete as a metric space is called a Banach Space.
- Contacting Mapping: If (X, d) be a complete metric space. A mapping $S: X \to X$ is

called a contacting mapping if there exists a real number α with

 $0 \le a < 1$ such that $d(Sx,Sy) \le \alpha d(x,y) \le d(x,y)$, for every $x,y \in X$

Thus in a contracting mapping the distance between the images of any two pints is less then the distance between the points.

Fixed point : Let X be a non empty set and Let $S: X \to X$, for all

 $x \in X$

Such that Sx = x, for all $x \in X$

That is S maps X to itself.

Then x is called fixed point of the mapping S

Convex Set: A non empty subset X of a Bonach Space is said to be

convex

if $(1-\alpha) x + \alpha y \in X$, for all $x, y \in X$

where α is any real such that $0 \le \alpha < 1$

Theorem:

Let X be a closed and convex subset of a Banach Space and let S be a self mapping of X into itself which satisfies the following condition:

$$[d(Sx, Sy)]^{2} \leq \alpha \max \begin{bmatrix} \frac{1}{4}d(x, Sx)d(x, STx), \\ \frac{1}{4}d(x, Sx)d(Tx, Sx), \\ \frac{1}{4}d(x, STx)d(Tx, Sx), \end{bmatrix}, \text{ For all } x \in X$$

And $y \in \{Sx, Tx, STx\}$ & $0 \le \alpha < 1$

Where T is self mapping in X such that

$$Tx = \frac{x + Sx}{2}...(2)$$

Then S has a fixed point

Proof- By the definition of metric space

$$d(x, Sx) = ||x - Sx||$$
$$= ||x + x - Sx - x||$$

$$= 2 \left\| \frac{2x - (Sx + x)}{2} \right\|$$

$$= 2 \left\| x - \frac{Sx + x}{2} \right\|$$

$$= 2 \left\| x - Tx \right\|$$

$$= 2 \left\| x - Tx \right\|, by(2)$$

$$= 2d(x, Tx) \dots (3)$$

Now d(Sx, Tx) =
$$||Sx - Tx||$$

= $||Sx - \frac{x + Sx}{2}||$, $by(2)$
= $||\frac{Sx - x}{2}||$
= $\frac{1}{2}||x - Sx||$
= $\frac{1}{2}d(x, Sx)$(4)

Again $d(Sx,Tx) = \frac{1}{2}d(x,Sx)$ $= \frac{1}{2}[2d(x,Tx)],by (3)$

$$d(Sx,Tx) = d(x,Tx)....(5)$$

Now taking A =2[(Tx-STx)+STx] =2 $\left[\frac{x+Sx}{2}-STx\right]+STx$ = x+Sx-STx(6)

Now d (A,
$$STx$$
) = $||A - STx|||$
= $||x + Sx - STx - STx||$, by(6)
= $||2 Tx - 2STx||$, by2
= $||x + Sx - STx - STx||$, by(6)
= $||2 Tx - 2STx||$, by2
= $2||Tx - STx||$
= $2 d(Tx, STx)$
= $2 d(Tx, STx)$
= $2 .2 d(Tx, TTx)$, by(3)
= $4 d(Tx, T^2x)$(7)
Now $d(A, STx) \le d(A, Sx) + d(Sx, STx)$, by triangular Inequality
= $||A - Sx|| + d(Sx, STx)$
= $||x + Sx - STx - Sx|| + d(Sx, STx)$, by(6)
= $||(x - Sx)| + ||Sx - STx|| + d(Sx, STx)$
= $d(x, Sx) + d(Sx, STx) + d(Sx, STx)$
= $d(x, Sx) + d(Sx, STx) + d(Sx, STx)$
= $d(x, Sx) + 2d(Sx, STx)$
=> $d(A, STx) \le d(x, Sx) + 2d(Sx, STx)$
= $2d(x, Tx) + 2d(Sx, STx)$, By (3)
=> $4d(Tx, T^2x) \le d(x, Tx) + d(Sx, STx)$
= $2d(x, Tx) + 2d(Sx, Tx) + d(Sx, STx)$
= $2d(x, Tx) + 2d(Sx, Tx) + d(Sx, STx)$
= $2d(Tx, T^2x) \le d(Tx, Tx) + d(Tx, Tx)$ (9)
Now from (1)

$$[d(Sx, Sy)]^{2} \leq \alpha . \max \begin{bmatrix} \frac{1}{4}d(x, Sx).d(x, STx), \\ \frac{1}{4}d(x, Sx).d(Tx, Sx), \\ \frac{1}{4}d(x, STx).d(Tx, Sx) \end{bmatrix}$$

$$=> d(Sx, STx) \le \alpha. \max \begin{bmatrix} \frac{1}{4}d(x, Sx)[d(x, Sx) + d(Sx, STx), \\ \frac{1}{4}d(x, Sx)\frac{1}{2}(x, Sx), \\ \frac{1}{4}[d(Sx, Tx)(d(x, Sx) + d(Sx, STx)] \end{bmatrix}$$
ByTriangular Inequality & By (4) & $y = Tx$
$$\frac{1}{4}[d(Sx, Tx)(d(x, Sx) + d(Sx, STx)],]$$

$$= \alpha. \max \begin{bmatrix} \frac{1}{4}[d(x, Sx)]^2 \\ \frac{1}{4}[\frac{1}{2}d(x, Sx)]^2 \\ \frac{1}{4}[\frac{1}{2}d(x, Sx)]d(x, Sx) + d(Sx, STx),] \end{bmatrix}$$

$$= \alpha. \max \begin{bmatrix} \frac{1}{4}[d(x, Sx)]^2 + d(x, Sx)d(Sx, STx), \\ \frac{1}{2}[\frac{1}{4}(d(x, Sx))^2], \\ \frac{1}{8}[d(x, Sx)]^2 + \frac{1}{8}d(x, Sx)d(Sx, STx)] \end{bmatrix},$$

$$= \alpha. \max \begin{bmatrix} 2\left[\frac{1}{8}(d(x, Sx))^2 + \frac{1}{8}d(x, Sx)d(Sx, STx)\right] \right],$$

$$= \alpha. 2\left[\frac{1}{8}[d(x, Sx)]^2 + \frac{1}{8}d(x, Sx)d(Sx, STx)\right] \right]$$

$$= \alpha. 2\left[\frac{1}{8}[d(x, Sx)]^2 + d(x, Sx)d(Sx, STx)\right]$$

$$= \alpha. 2\left[\frac{1}{8}[d(x, Sx)]^2 + d(x, Sx)d(Sx$$

Which is quadratic equation

Then by the solution for equation $ax^2+bx+c=0$ is given by

 $=> 4[d(Sx, STx)]^2 - \alpha d(x, Sx)d(x, STx) - \alpha [d(x, Sx)]^2 \le 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Hence
$$d(S,STx) - \frac{\alpha(x,Sx) \pm \sqrt{\alpha^2 [d(x,Sx)]^2 + 16\alpha(d[(x,Sx)]^2)}}{2 \times 4} \le 0$$

$$d(S,STx) - \frac{\alpha(x,Sx) \pm d(x,Sx)\sqrt{\alpha^2 + 16\alpha}}{8} \le 0$$

$$d(S,STx) - \frac{2d(x,Tx)[\alpha + \sqrt{\alpha^2 + 16\alpha}]}{8} \le 0$$

$$d(S,STx) - \frac{d(x,Tx)[\alpha + \sqrt{\alpha^2 + 16\alpha}]}{4} \le 0, by(3), on taking(+ve) sign$$

$$d(Sx,STx)-\zeta d(x,Tx) \le 0$$

$$d(Sx, STx) \le \zeta d(x, Tx)...(10)$$

Where
$$\varsigma = \frac{\alpha + \sqrt{\alpha^2 + 16\alpha}}{4}$$

Where $0 \le \varsigma < 1$

Because if
$$\zeta < 1$$
 then $\frac{\alpha + \sqrt{\alpha^2 + 16\alpha}}{4} < 1$

$$\Rightarrow \alpha + \sqrt{\alpha^2 + 16\alpha} < 4$$

$$\Rightarrow \sqrt{\alpha^2 + 16\alpha} < 4 - \alpha$$

$$\Rightarrow \alpha^2 + 16\alpha < (4-\alpha)^2$$

$$\Rightarrow \alpha^2 + 16\alpha < 16 + \alpha^2 - 8\alpha$$

$$\Rightarrow 24\alpha < 16$$
 $\Rightarrow \alpha < \frac{16}{24}$ $\Rightarrow \alpha < 0.66 < 1$ $\Rightarrow \alpha < 1$

Hence $\varsigma < 1$

And also
$$0 \le \alpha \implies 0 \le \varsigma$$
 Hence $0 \le \varsigma < 1$

Now by (9) & (10)

$$2d(Tx,T^2x) \le d(x,Tx) + \varsigma d(x,Tx) = (1+\varsigma)d(x,Tx)$$

$$d(Tx, T^2x) \le \frac{(1+\varsigma)}{2}d(x, Tx)$$

Similarly

ISSN: 2320-0294

$$d(T^{2}x, T^{3}x) \le \frac{(1+\varsigma)}{2} d(Tx, T^{2}x)$$

$$\le \frac{(1+\varsigma)}{2} \frac{(1+\varsigma)}{2} d(x, Tx) = \left(\frac{1+\varsigma}{2}\right)^{2} d(x, Tx)$$

Similarly we can find

$$d(T^3x, T^4x) \le \left(\frac{1+\zeta}{2}\right)^3 d(x, Tx)$$

and
$$d(T^4x, T^5x) \le \left(\frac{1+\zeta}{2}\right)^4 d(x, Tx)$$

$$d(T^n x, T^{n+1} x) \le \left(\frac{1+\varsigma}{2}\right)^n d(x, Tx).$$
(11)

$$:: \varsigma < 1 \qquad \Rightarrow 1 + \varsigma < 2 \qquad \Rightarrow \frac{(1 + \varsigma)}{2} < 1$$

Then
$$\lim_{n\to\infty} \left(\frac{1+\zeta}{2}\right)^n = 0$$

:. from euqtion (11) $d(T^n x, T^{n+1} x) \to 0$ as $n \to \infty$

 $d(T^n x, T^{n+1} x) < \varepsilon \text{ for } \varepsilon > 0 \text{ as } n \to \infty$

 $\therefore \{T^n x\}_{n=1}^{\infty}$ is a Cauchy Sequence in X. (By the defination of Cauchy Sequence)

But X is a Banach Space. Then by the property of completeness

 $\therefore \{T^n x\}_{n=1}^{\infty}$ is a convergent sequence in X, which converges to a fixed point.

Let there exists a point ω in X such that $\lim_{n \to \infty} T^n x = \omega$(12)

Now consider $d(\omega, S\omega) \le d(\omega, T^{n+1}\omega) + d(T^{n+1}\omega, S\omega)$ by triangular, *Inequality*

$$= d(\omega, T^{n+1}\omega) + d(TT^{n}\omega, S\omega)$$

$$= d(\omega, T^{n+1}\omega) + \|TT^n\omega - S\omega\|$$

$$= d(\omega, T^{n+1}\omega) + \left\| \frac{1}{2} (T^n \omega + ST^n \omega) - S\omega \right\|, \quad \text{by (2)}$$

$$=d(\omega,T^{n+1}\omega)+\left\|\frac{1}{2}T^n\omega-\frac{1}{2}S\omega+\frac{1}{2}ST^n\omega-\frac{1}{2}S\omega\right\|$$

$$\leq d(\omega, T^{n+1}\omega) + \frac{1}{2} \left\| ST^n \omega - S\omega \right\| + \frac{1}{2} \left\| T^n \omega - S\omega \right\|$$

$$=d(\omega,T^{n+1}\omega)+\frac{1}{2}d(ST^{n}\omega,S\omega)+\frac{1}{2}d(T^{n}\omega,S\omega)$$

$$= d(\omega, T^{n+1}\omega) + \frac{1}{2} \Big(d(T^n\omega, S\omega) + d(S\omega, ST^n\omega) \Big)$$

$$=d(\omega,T^{n+1}\omega)+\frac{1}{2}\Big(d(T^n\omega,ST^n\omega)\Big)$$

$$= d(\omega, T^{n+1}\omega) + d(T^n\omega, TT^n\omega), by(3)$$

$$= d(\omega, T^{n+1}\omega) + d(T^{n}\omega, T^{n+1}\omega)$$

$$=d(\omega,T^{n+1}\omega)+d(T^{n+1}\omega,T^n\omega)$$

$$=d(\omega,T^n\omega)$$

$$=d(\omega,T^n\omega)$$
 :: X is convex.

$$\Rightarrow d(\omega, S\omega) \leq d(\omega, T^n\omega)$$

As
$$n \to \infty$$
 then $d(\omega, T^n \omega) \to 0$, by (12)

$$d(\omega, S\omega) \leq 0$$
 $\Rightarrow S\omega = \omega$

$$\therefore$$
 S has a fixed point ω in X

ISSN: 2320-0294

References:

- [1] Bajaj N., 2001. A fixed point theorem in Banach space: Vikram Mathematical Journal, 21:7-10.
- [2] Chaubey A.K. and Sahu D.P., 2011. Fixed point of contraction type mapping in Banach space. Napier Indian Advanced Research Journal of Science, 6:43-46.
- [3] Ciric Lj., 1977. Quasi-Contractions in Banach space: Publ. L'Instt. Math. (N.S.), 21(35):41-48.
- [4] D.P., Shukla, 2012, Fixed point theorem in Banach Space, Indian J.Sci. Res. 3(1):177-178
- [5] Fisher B., 1979. Mappings with a common fixed point: Math Sem. Notes, Kobe Unive., 7:81-84.

